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Abstract—A method is given for computing the strength and inteasity of stress singularities in cylindrical
configurations. The method uses special finite clemeats that are formulated with a variable singularity strain
matrix, in cosjenction with a simple minimum poteatial eaergy technique. Four distinct combinations of
geometry and londing are treated. Results are shown to kave high resolition and are in good agreement with
available theory.

‘INTRODUCTION

A recurring problem in elasticity involves a right circular cylinder under axial load but having
constrained or clamped ends, as in Fig. 1. The key issue is characterization of the singularity in
strain and stress at the “corner”, i.c. along the intersection of the cylindrical surface and the
planar end. The singularity arises because the cylindrical surface is traction-free, while a high
level of shear is required to constrain the end against radial motion. There is then a
discontinuity in the shear, just at the corner, and the remaining components of strain and stress
become singular.

Studies of this problem date at least from 1902, with Filon's work[1]). Many other ap-
proaches have been taken, mainly within the last two decades[2-10]. Various methods have
been employed, including Fourier analysis{2], variational techniques[3], collocation[4, 5], and
eigenfunction expansions[6-10]; the quality of result—-especially in terms of convergence—
appears to reflect the technique used.

The most recent work[9, 10] attacks the presence of a singularity directly and has sought to
determine both its character, i.c. strength and its intensity. Both analyses utilize a local toroidal
coordinate system, (p, ¢) in Fig. 1 and both replace the presence of the coordinate r by a
binomial expansion in terms of the (p, ¢) system. Then, following the template of Williams’s
formulation[11], boundary conditions at ¢ =0 and ¢ = nf2 are imposed to delimit those
solutions to the field equations acceptable for subsequent analysis. In both cases, an eigen-
equation is derived, solutions to which lead to formulae for stress which may then be patched
into the otherwise smooth solution for the bulk of the cylinder.

It is to be noted that the eigen-equations developed by Zak[9] and by Benthem and
Minderhoud[10] are the same; the difference between these two efforts is largely the manner in
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Fig. 1. A cylinder with constrained ends.
959



960 J. S. SoLeCKI and J. L. SWEDLOW

which the localized analysis is integrated with the global analysis. It is to be noted further that
the eigen-equations derived in[9) and in{10] correspond precisely to the one found by
Williams[11] for plane strain, i.e. as if Ry—« in Fig. 1. The implication of course is that, as
p~0, the condition is one of plane strain; it makes no difference whether tractions vanish at
¢ =0 and clamping is at ¢ = n/2, or vice versa. While the arguments for this result are
convincing, the implications for engineering use of the result are not always fully understood;
there is some need to know the stress field in the vicinity of the corner as well as at its precise
position.

In this paper we discuss a sequence of cylinder problems, analyzed via a special finite
element method which resolves considerable detail of the stress field in the vicinity of the
corner. The method is a particular, i.e. axisymmetric, case of a general approach described
carlier{12]. It is designed to elicit the strength of the singularity and to provide a detailed
database with respect to the stress field which may be examined by itself or which may be used
to extract an appropriate measure of local stress intensity. Moreover, the method is adaptable
immediately to other shapes, e.g. V-notches or re-entrant corners. The problems reported here
include two long cylinders, one solid and one hollow, with clamped ends; a long cylinder with
its outer diameter constrained; and a thin disk whose faces are clamped. In general, our findings
are not at variance with those in the literature, but our resuits do provide further insight into
these problems and thereby form a useful supplement to prior work.

METHOD OF SOLUTION

In Fig. 2, we show the placement of a typical special element at the vertex of the singular
region. As indicated, the element has five nodes and it occupies the space 0<p <2p,, ¢; <@ <
¢, in the local toroidal coordinates. An array of these elements models the vertex ¢, < ¢ < ¢;
this array is then embedded in a host field of “‘regular” finite elements—here, linear displace-
ment, three node, axisymmetric triangles[13). Note that Fig. 2 is drawn for any corner in the
(r, z) frame and individual cases are defined by adjusting ¢, and ¢;.

We proceed under the assumption that the behavior of the stress field near the vertex (p - 0)
is dominated by a singularity whose form is

cp?!, 0<qg<) (n

where ¢ is a measure of the stress intensity and g indicates the strength of the singularity. In
addition to the displacements which correspond to (1), the stiffness approach of the finite
element method requires displacement fields that permit rigid body motion as well as constant
strains. Accordingly, the following global (r, z) displacement components are assumed to take
the form

u=uy+Ar+ Cz +(E + F¢)p? cos ¢ — (G + Hp)p® sin ¢

w = wo+ Bz + Dr+(E + F$)p® sin ¢ +(G + H)p* cos &. (22)
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Fig. 2. A five node special element.
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The corresponding components in the local coordinate frame are

u, = Ap cos® ¢ + Bp sin® ¢ +(C + D)p sin ¢ cos ¢ +(E + Fé)p* +(ue+ AR + CZ) cos $

+{wy+ DR + BZ) sin ¢ b)
v.=Dpcos’¢—Cpsin’¢+(B—A)psin¢oos¢+(G+H¢)p'+(w,+DR+BZ)cos¢
~(Mp+ AR + CZ) sin ¢.

Note that the displacement behavior corresponding to (1) also allows for linear variation in the
circumferential direction via the fourth terms in each of (2b). The coefficients A,B,,, are then
eliminated from (2) to obtain displacements in terms of nodal values of p and ¢. After some
algebra, we have

{u}={uw}" =[a(p, ¢; )} i} 3

in which the components of [a] are the interpolation functions and {4} represents a vector of
nodal displacements. For any particular element

{@} ={u, w,. . .us ws}.
Differentiation of (3) gives the strains in axisymmetric elasticity as
{e} ={ee 7.6} =[B(p, ¢: OHA} “
where [B] is termed the strain matrix. We also define the elasticity matrix by
{0} =1{0,0:7,05}" = [Dl{e}. )

The potential energy of an individual special element of volume V, is of the form
=3[ oriaav-| wrines ©®
v, S

in which {t} is the vector of tractions prescribed on the appropriate portion S, of the element’s
area (for simplicity we have omitted initial strains and body forces). Noting that dV =
2%(R + p cos ¢)p dé dp and combining (3), (4) and (5) with (6) results in

I = w{a}” “ (BYIDIBXR + p cos ¢)p dp dp{a}~{4)™ | [al™{t}dS.
# o S

We regard the functional II° as being dependent upon {ii} and the exponent q; hence, it
provides the special aspect of this element.
Equating the first variation of [1* with zero, we have

ar
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A moment'’s reflection shows that a null value of the first term on the right of (7) is equivalent to
the familiar elemental stiffness equation relating nodal forces {F,} to {4}

[K,{a}={F} ®
where

[ [
[K,)=2n L L [BITIDIBKR + p cos $)p dp dé

(8a)
{F}= ]s [al{t) ds.
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The integrals in (8a) are complex and are computed numerically by Gauss quadrature using
seven radial and three angular sampling positions.

The second term in (7) represents the variation of the potential energy with respect to the
singular exponent. Clearly, this may lead to a different value of ¢ for each special element.
However, we take g to be the same for all the elements, in agreement with what we know of
such singular behavior[11]; i.e. that the singularity is independent of spatial coordinates. As we
will show below, g should be calculated and potential energy minimized on a global basis.
Moreover, to permit q to vary from one element to the next would introduce a discontinuity of
displacements between adjacent special elements.t

We now turn our attention to the global analysis. The total potential energy of the complete
structure, consisting of n special elements and m regular elements is simply

=31+ 31

i=1 i=1

where the superscript r denotes regular elements. Taking the same strategy in the global
analysis and noting that I1/ is independent of g, yields

iy DS 1s80 =
o1l a{a}a{"}* aq;n,aq 0 9

where {a} is a vector containing ali of the nodal degrees of freedom of the structure. Hence, the
result (9) of minimizing the functional [T' with respect to all nodal displacements {a} and ¢ is
the following simultaneous conditions

[K{a}={F} (10a)
?:: Il = minimum with respect to g (10b)
=]

where [K] is the assembled global stiffness matrix and {F} is a vector of prescribed nodal
forces. Note that by (10b) q is tacitly required to be the same for the complete sector of special
elements.

The solution algorithm begins by solving (10a) for any value of g within the range specified
by (1). The potential energy is calculated and minimized by adjusting ¢ such that (10b) is
satisfied. Using the new value of g, the global stiffness equation is solved again. This procedure .
is repeated until (9) is satisfied to some appropriate numerical precision.

The formulations described above are incorporated in a finite element computer code called
AXISPL[16). For the problems treated with this code, storage requirements on a DEC 2060 are
approximately 50,000 words, including some double precision usage necessitated by the size of
R, relative to p,.

ANALYSIS AND RESULTS

Four circular cylinders were chosen for analysis. Three of the cylinders have stress free
curved surfaces and constrained ends. These include a long solid cylinder, a long hollow
cylinder, and a thin solid disk. The remaining problem is a long solid cylinder with stress free
ends and a constrained curved surface; the outer diameter is displaced radially but not axially.
As shown in Fig. 3, the long cylinders were analyzed with the same finite element map, with the
following proportions, long solid cylinder: L/D = 2.5, RJ/R,=0; long hollow cylinder: L/D =
1.25, R/R,=0.5. This map has 414 degrees of freedom. No attempt was made to capture the
singularity at R;; its highly localized nature should not affect behavior at Ry. We thus have the
advantage of comparing results from a single map under different loadings.

1There remains, however, an interclement incompatibility at the interface (p = 2p,) of_lhe.special and regular elements.
Based on the patch test, on previous work{12, 14, 16}, and the results reported herein, this difficulty is negligible.
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Fig. 3. Axisymmetric finite element model used in the analysis of the long circular cylinders.

The thin diskt was modeled as shown in Fig. 4. It has 316 degrees of freedom and the
following proportions, L/D = 0.0625, R/R,=0.
The nodal boundary and symmetry conditions for the long solid cylinder and thin disk with
constrained ends are
r=Ry; o, =0, T.=0
r=0; u=0, T.=0
z=0; u=0, w=0

z=L2; w=w, 1,=0
in which wy is a constant. For the long hollow cylinder, the second of the above is replaced with
r=R; o,=0, 7,,=0.

For the long solid cylinder with the curved surface constrained, thg imposed nodal conditions
are
r= Ro; U = g, w=0

r=0; u=0, T.=0

z2=0; g, =0, 1, =0

z=L2;, w=0, T.=0

where «, is a constant.

Fig. 4. Axisymmetric finite element model used in the analysis of the thin disk.
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Each of the four cylindrical configurations was analyzed assuming a linear elastic, homo-
geneous, isotropic material with Young’s modulus and values of Poisson’s ratio as

E=25x10°psi
v =0.20, 0.25, 0.30.

CPU time for these analyses was approximately 30 seconds per iteration on a DEC 2060 and,
typically, two to four iterations were required.

We now turn our attention to the computation of the singularity exponent g. As previously
mentioned, the works of both Zak{9] and Benthem and Minderhoud[10] show that the
cigenfunction in the vicinity of the singularity is identical to the form derived by Williams[11]
for a clamped-free wedge of angle 7, namely

g = [ [0 ) an

The eigenvalue A is defined through its use in

x(p, ¢)=p**'F(¢;A)

in which y is the Airy stress function and is a biharmonic function in polar coordinates. It is a
simple matter to show that in the range 0 < A <1, strains and stresses are singular. Clearly, the
exponent g used in this paper is equivalent to the lowest real positive root (A;) of (11).
Computed values of g vs v are piotted in Fig. 5, along with A, as derived from (11). It is evident
that the overall behavior of A, and g vs v is the same, although there is a definite shiff in
magnitudes for the long cylinders.

The differences between A, and g may be due to modeling sources, two of which are
obvious. The special elements, after all, are finite: Figs. 3 and 4 show 2pJ(R;— R;) = 1/32 for the
cylinders. To maintain numerical precision, finiteness is required, whereas the eigenanalysis is
for the limiting case, p - 0. Prior studies[14, 16] have shown minimal sensitivity of the exponent
to the radial size of the special element, with the trend in the proper direction. All evidence in
hand thus points to g— A, precisely as g, -0 but, unfortunately, this is a limit we cannot test.

A more important source of difference between g and A, is what may be termed eigenvalue
smearing. Recall from (1) and the subsequent element formulation that we model behavior of
strain and stress as

C|pq—|+C2 (12)
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Fig. 5. Singularity exponent g vs Poisson's ratio for each cylinder problem.
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On the other hand, (11) has an infinity of roots, the lowest of which is real and in the open
interval 0, 1. Beyond that, Zak[9] tabulates the next 19 roots as complex. To represent the
formal eigenanalysis, the expression (12) must be adjusted to a slightly different form:

EpMTN + Ep T

The result is that the coefficients in (2) will be affected; in addition the exponent ¢ may reflect
some difference. To test the magnitude of this effect, the present element would require
reformulation with seven nodes, the introduction of a second special term having an exponent
p, and minimization as in (10b) with respect to both exponents, each operating in its own
interval. We believe the quality of the present results does not warrant such an extension of the
model.

Angular variations of stress components are shown in Figs. 6-9 for one local radial position
and one value of Poisson’s ratio. For the cylinders with constrained ends, all stress components
are normalized by the resultant axial stress and for the one cylinder with the constrained radial
surface we use the resultant radial stress. These values are computed from discrete nodal
reaction forces (10a) in the finite element analysis, as opposed to element values of the
respective stress components. ' o

Notice that the high stress gradients are smoothly depicted. The major difference between
the results for each cylinder is the amplitude of the stresses. The overall differences are better
compared by plots of principal stresses, maximum shear stress and strain energy density, as
illustrated in Figs. 10-12, respectively. Also, note that the expected symmetry between
constrained plane ends and constrained curved surface solid cylinders is readily apparent,
aithough there is a slight difference in amplitude. For all the cylinders, it is evident that the
maximum shear stress and strain energy density peak in the range of 25-35 deg, measured from
the free surface. Radial distributions of some of the same quantities appear in Figs. 13-15.
Computed stress o, and 7,, from the long solid cylinder analysis are in good agreement with
those reported by Benthem and Minderhoud[10) for a semi-infinite cylinder.

Apparently, stress is affected by changing values of R/R; and L/D, whereas the singular
behavior of the stress is relatively unaffected by these same quantities. This dependence of the
intensity of stress on curvature is coincidentally in agreement with the numerical results
reported by Swedlow and Ritter[17), for cracked cylinders in simple tension.

CONCLUSIONS
In this paper we demonstrate that a special finite element method can be a satisfactory tool
for determining the stress distribution in axisymmetric structures containing singularities. The
method indicates both the intensity and nature of singularity via a simple minimum potential
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Fig. 6. Angular variation of ofo, at pl/(R,— R;) ~0.0008 for the long solid cylinder with constrained ends.
Fig. 7. Angular variation of o/a, at p/(Ro~ R;) ~0.0008 for the long hotlow cylinder with constrained ends.
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Fig. 9. Angular variation of ofa, at p/(Ry — R;) ~0.0008 for the thin disk with constrained ends.
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Fig. 15. Radial variation of o/o, at z =0 for the thin solid disk with constrained ends.

energy technique. For the constrained cylinders analyzed, the singular behavior is relatively
unaffected by curvature and length. The intensity of the stress field is, however, dependent
upon these quantities. While the range of applicability has been limited to right circular
cylinders, the method can be applied to other problems where the singularities are not well
known. Such problems would involve further geometric complexity as encountered in
engineering practice, a wider range of load configuration and constraint and material anisotropy.
That the method may be extended to incorporate elasto-plastic flow is evident as well[14].
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